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Abstract

Aluminum-lithium near-net-shape extrusions are viable candidates for structural applications on
a variety of aerospace vehicles. The objective of this investigation was to establish the relationship
between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-
stiffened extruded panels fabricated from alloys 2195, 2098 and 2096. In-plane properties were
measured as a function of orientation with respect to the extrusion direction at two representative
locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T'

stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most
anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more
isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the
most isotropic. All three alloys exhibited highly elongated grain structures and similar location-

dependent variations in grain morphology. The textural characteristics comprised a _ + <100> fiber
texture, similar to rolled product, in the Skin regions and a <111> + <l O0>fiber texture, comparable to
axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with
yield strength anisotropy, the original 'full constraint' model, pioneered by Taylor, and a variant of the

'relaxed constraint' model, explored by Wert and co-workers, were applied to the data. A comparison of
the results revealed that the Wert model was consistently more accurate than the Taylor model.
Discrepancies between the predictions and the measured yield strength anisotropy were addressed in
terms of the heterogeneous microstructural and textural characteristics observed.

1. Introduction

Opportunities to use near-net-shape extrusions for aerospace structural applications, where

eliminating joints and fasteners is beneficial, are being explored [1, 2]. The use of reduced density
aluminum-lithium (A1-Li) alloys in combination with lower part count is expected to be economical as a
result of lower structural weight and simplified manufacturing operations [3]. However, the mechanical

property anisotropy of extruded products with complex cross-sections, resulting from heterogeneous
material flow during the extrusion process, has tended to jeopardize widespread application. This effect
is compounded by the fact that Li-bearing A1 alloys, regardless of product form, typically exhibit
unrecrystallized grain structures with strong textures and through-thickness gradients which culminate in

highly anisotropic behavior [4]. Considerable research has been conducted on structure/property
relationships in A1-Li rolled products [5-8], but previous work on A1-Li extrusions has tended to
concentrate on processing/property [9-12] and processing/structure [13, 14] relationships, rather than

establishing quantitative structure/property correlations per se [15, 16]. A survey of the literature also
revealed that information concerning the behavior of extrusions with the complex cross-sectional
geometries typically required for structural applications is sparse. Consequently, improved methods
which can predict mechanical anisotropy based on microstructural and/or textural characteristics in these

types of engineering materials need to reach maturation.

Research on A1 alloys has shown that mechanical anisotropy is governed primarily by
crystallographic texture, with grain morphology and coherent precipitate effects playing secondary roles

[8, 17-19]. Models developed to correlate texture with mechanical behavior assume that a polycrystalline
material can be described as an aggregate of single crystal grains with different crystallographic
orientations [20-22]. The basic premise is that there is no interaction between grains and the behavior of
the aggregate is determined by the collective behavior of the individual grains. The yielding of individual

grains is considered to be solely dependent on orientation with respect to the tensile axis and the imposed
strain state [23]. In complex-textured materials, the relative volume fractions of grains with specific
crystallographic orientations can be quantified by employing orientation distribution function (ODF)

analysis [24, 25]. Consequently, the yield strength anisotropy exhibited by extruded materials can be



predictedviaTaylor-typerelationships[15,16].Existingmodels,formulatedto relatetextural
characteristicsto yieldstrengthanisotropy,canbebroadlycategorizedbythedegreeof constraint
employed[26]. Constraintreferstothenumberof independentactiveslipsystemsineachgrainthatare
considerednecessaryto supportdeformationof apolycrystallineaggregateunderaspecifiedstrainstate.
In A1alloys(Lc.c.),thereare12operableslipsystemsofthetype{111}<110>,capableof imparting
strainto eachgrain,butonlyfivesystemsneedtobeactivatedto retainmaterialcontiguity[23,26].

Thevariousmodelswhichhavebeenproposedarerankedin termsofthedegreeof constraintin
Figure1,whichalsoillustratesthedifferencein theassociatedgrainshapechanges[23,26]. TheFull
constraint(F)model,proposedbyTaylor,allows5 active slip systems in each grain and allows no shear
deformation on any of the principal specimen planes [21, 22]. The relationship takes the form:

(_YS : _/I'_cRSS

where c_ysis the yield strength of the aggregate, "ccRs_is the critical resolved shear stress for a single crystal

and 1VIis the average Taylor factor. In contrast, the No constraint (N) model, proposed by Sachs, allows

only 1 active slip system in each grain and shear deformation on all three specimen planes and also allows
for the Poisson effect [20]. This relationship takes the form:

_s : (l/l_)'Xc,ss

where l_l is the average Schmid factor. Relaxed constraint (R) models reside in-between the Taylor and

Sachs models by allowing plastic deformation to be imparted by the activation of 2, 3 or 4 slip systems in
each grain. Reduction in the number of slip systems responsible for overall specimen deformation can be
brought about by elongated grain morphologies, in concert with specific textural compositions [23]. For a

material comprising randomly oriented grains, it is generally accepted that lgl= 3.06 and 1/61= 2.24 [20,

21, 26]. Therefore, the fewer slip systems that are active, the lower is the yield strength predicted
assuming a constant value for the critical resolved shear stress of a single crystal. Consequently, the F
and N models form the upper and lower bounds, respectively, for yield strength predictions, with R-type
models providing intermediate values.

In this study, refinements to the R-type models proposed by Wert et al. for precipitation-
strengthened materials are explored. The Wert 'plastic inclusion' model assumes that non-axisymmetric

strain states are allowed and that each grain can undergo a different shape change than the aggregate [27-
29]. Specifically, the 'independent grain deformation' (IGD) variant of the Wert model applied in this
work still treats each grain in the aggregate as a separate entity and allows it to deform independently of
its neighbors. The key assumption of the IGD model is that individual grains adopt the strain state which

minimizes the yield strength of that grain for each strain axis orientation and the number of active slip
systems is not specified [30, 31]. The model works by an iterative process which steps through the
various R-type models (as illustrated in Figure 1) in order to compute the minimum yield strength. By
permitting non-axisymmetric strain states within grains, the predicted stress at which the aggregate

deforms as a whole will always be lower than that predicted by the F model. In previous work,
predictions by the IGD model suggest that the contribution of precipitates to plastic anisotropy is of
secondary importance compared to that of crystallographic texture [31]. Hence, the role of precipitates in

explaining orientation-dependent yield strength variations was not included in the present work. The
objectives of this investigation were: (i) to compare and contrast the mechanical anisotropy exhibited by
the three extrusions; (ii) to study the relationships between microstmctural / textural characteristics and
tensile / toughness properties; and (iii) to evaluate the F and IGD model outputs for predicting yield

strength anisotropy based on quantitative texture analyses.
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2. Experimental Procedures

The A1-Li near-net-shape extrusions studied in this investigation were produced at Wyman

Gordon (Houston, TX) from ingots produced by Reynolds Metals Company (McCook, IL). The

compositions of the 2195, 2098 (formerly RX818) and 2096 ingots are shown in Table 1, and details of

the processing, which have been outlined previously, are summarized in Table 2 [32]. The extrusions

were produced as 33 in. internal diameter cylinders with the T stiffeners located on the outer surface,

Figure 2(a). The final lengths of the extrusions were 255 in. for 2195, 120 in. for 2098 and 165 in. for

2096. These were then split length-wise, flattened, solution heat treated, stretched, naturally aged and

artificially aged to a T8 temper condition, Figure 2(b). The major difference between the alloy

compositions is the variation in the Cu:Li ratio which governs the solution and aging heat treatments

(temperature and time) required to achieve the T8 temper condition. The alloys were designed by

Reynolds to reside in a common phase field, such that the Cu:Li ratio merely affects the primary

precipitate volume fraction and the maximum attainable strength level [33]. The varying Cu:Li ratio (and

total solute content) was manifested in subtle differences in the effective homologous temperature (T/T M

in K) for both hot working, due to the common extrusion temperature, and the solution heat treatment/

aging temperatures selected for each alloy.

Table 1. Alloy Compositions

Alloy Nominal Elemental Composition (wt. pct.)

Cu Li Mg Ag
2195 4.05 1.05 0.46 0.44

2098 3.62 0.91 0.48 0.38

2096 2.38 1.42 0.73 0.31

Zr A1

0.14 Bal.

0.15 Bal.

0.14 Bal.

Figure 3 shows details of the cross-sectional geometry of the extruded panels and outlines the

nomenclature adopted to describe the locations and orientations within the extrusions. Considering

differential material flow during the extrusion process, two representative locations were identified for

study. These locations are the skin mid-way between the stiffeners and the skin at the base of the

stiffeners, which will hereafter be referred to as the 'Skin' and 'Base' regions in discussion. (Note that

the vertical portion of the T stiffener is referred to as the 'Web' and the horizontal segment, as the 'Cap').

The Base region is of interest because of the microstmctural and textural heterogeneities introduced

during the extrusion process and the localized effect on mechanical properties. In contrast to rolled

product, through-thickness locations in the extruded product were not expected to be symmetrical about

the mid-plane [34-36]. Therefore, the depth locations are defined from t o (the outer surface) through t/4,

t/2 (the mid-plane) and 3t/4 to t i (the inner surface) of the cylindrical cross-section (with the 'T' stiffeners

being located on the outer surface). Mechanical test specimen orientations were defined with respect to

the principal axes of the original cylindrical extruded cross-section. The (A)xial direction is parallel to

Table 2. Alloy Processing

Alloy Extrusion Solution Heat Treat.

Temp., °F Ratio
750 18:1

750 18:1

750 18:1

Temp., °F Time, hrs

Stretch, % T8 Aging Treatment

Temp., °F Time, hrs

2195 950 1 3.4 300 20

2098 980 1 1.6 310 24

2096 980 1 2.8 330 30



the extrusion direction, the (C)ircumferential direction is perpendicular to the extrusion direction in the
plane of the skin and the (R)adial direction is perpendicular to both the extrusion direction and the plane
of the skin.

Metallographic examination of the Skin and Base regions was conducted through thickness for
macrostructural studies and centered at t/2 for microstmctural evaluation. Nomarski contrast of Keller's

etched specimens was used to reveal material flow lines in the macroscopic images and cross-polarized
illumination of anodized specimens was used to reveal grain contrast in the optical micrographs.

Crystallographic x-ray data for the Skin and Base regions at the to, t/4, t/2, 3t/4 and t i locations were

collected with a Philips x-ray diffractometer using CuK0_ radiation with tube settings of 40kV and 30mA.

Since a 0.75 in. square texture sample was required and the stiffener width was only 0.125 in., a laminate
consisting of six 0.75 in. long sections from the same stiffener was assembled for collecting Base region
data. The raw data were corrected with respect to background intensity and defocusing errors using data
collected from a randomly-textured pure A1 powder specimen. Quantitative texture analysis involved

measuring three incomplete (111), (200) and (220) pole figures from which ODF's were calculated via
the series expansion method using commercial software [24]. Through-thickness variations in texture
intensities were determined by plotting orientation density, f(g), along recognized texture fibers in Euler

space (employing the Bunge notation, i.e. %, _), %) [24, 25, 37].

Figure 4 illustrates the main texture fibers frequently associated with A1 alloy products which
were considered in this study [26]. Selected other texture components common in A1 alloys, but not

contained within these fibers, were also included in the analyses [24, 25, 38-41]. All of the deformation-
related (DF-) and recrystallization-related (RX-) components used to establish textural characteristics are
listed in Table 3. The relative intensities of these fibers and components were determined from ODF

plots such as those shown in Figure 5 for the 2098 extrusion in the Skin and Base regions. The complete

% sections shown essentially represent a 2-D rendition of Euler space. The 'box' presentation of Euler
space in Figure 4 has been adjusted relative to the ODF data in Figure 5 such that the continuous nature of

the fibers can best be envisioned. Comparing Figure 4 with Figure 5; %= 0 ° to 45 ° (ODF) corresponds to

%= 0 ° to 45 ° (box), while %= 45 ° to 90 ° (ODF) corresponds to %= -45 ° to 0 ° (box). Particularly

significant to this work are the _ (rolling) and <111> (extrusion) fibers which start together at the Cu

orientation (@ %= -45 °) in the schematic and extend through Euler space with a % separation of 15-20 °
[14, 42]. Similar texture components contained within these rolling- and extrusion-related deformation

fibers are: S related to Ex 2 (@ %= -35°), Brass to Ex_ (@ %= 0 °) and S'_ to Ex 3 (@ %= 20°). The offset

between these fibers (%=15-20 °) can also be observed by comparing the typical data contained in Figures
5(a) & 5(b).

The specimen layout for mechanical testing is outlined in Figure 6; tensile properties were

determined in 15° increments to the extrusion direction and fracture toughness properties at 0° (L-T), 45 °
(45-45) and 90 ° (T-L) only. Tensile tests were conducted using sub-size fiat specimens with gage
dimensions of 1 in. long x 0.25 in. wide x 0.15 in. thick, in conformance with ASTM E8 [43]. Duplicate
tests were performed at a constant cross head speed of 0.01 in./min, in a servo-hydraulic test frame.

Strain-to-failure was measured using back-to-back extensometers. Duplicate fracture toughness tests were
conducted using compact tension (C(T)) specimens with W = 2 in. and B = 0.15 in. conforming with
ASTM E813 and E1152 [44,45]. The C(T) specimens for the Base regions were extracted such that the

end of the fatigue pre-crack was centered beneath the stiffener. Physical crack lengths were determined
using DC potential drop methods. The resulting J-R curves were converted to K-R curves using the
relationship:

K=[(J.E)/((1-v2)] _

4



where E is Young's modulus and v is Poisson's ratio [46]. Initiation toughness (Kji), defined as the

toughness at 0.004 in. stable crack extension, was determined from K-R curves using prescribed methods

[46,47]. It is important to note that the thickness of the tensile and C(T) specimens, centered on t/2,

extended from approximately t/4 to 3t/4 in the extruded cross-sections.

Table 3. Common Texture Components in Al Alloys

Type

Deformation:

Recrystallization:

Component {hkl }<uvw>

{011}<211>

Euler Angles (Btmge)

q0_

0Bs

S {123}<634> 65

S" 1 {123}<412> 20

S" 2 {146}<211> 35

Cu {112}<111> 45

Exl {011}<111> 0

Ex 2 {123}<111> 65

Ex 3 {134}<111> 40 20

Sheart {001}<110> 45

Shear 2 {111}<110> 45

{112}<110>Shear 3

{011}<100>

45

35 45

55 35

25 60

55 85

90 30

50 45

75 35

60

0 0

0 55

0 35

0 45

0 0

0 20

0 35

20 0

35 0

70 45

55 20

55 75

75 25

Goss 0

Cube {001}<100> 0

RCRD, {013}<100> 0

RCRD_ {023}<100> 0

RCNm {001}<310> 0

RCNm {001}<320> 0

P {011}<122> 0

Q {013}<231> 0

R {124}<211> 25

{113}<211>Bsax 45

For the purpose of modeling, yield strength values as a function of specimen orientation were normalized

with respect to the yield strength value for the 0 ° orientation. The volume fraction of each texture

component was estimated by normalizing the intensity of the component, f(g)i, relative to the combined

intensity of all of the components, Zf(g)i. Average Taylor factors were calculated as a functionof tensile

specimen orientation by summing the product of the Taylor factor and the volume fraction for each of the

texture components examined (i.e. lVl = Mi.f(g)i/'£f(g)i ). It was recognized that the Taylor factor is

asymmetrical about the 0 ° orientation for most of the texture components examined. Since the sense of a

particular component is indeterminate from ODF data, the value of Taylor factor used for both the F and

R models represented the average of the variation from 0 ° to +90 ° and 0 ° to -90 °. The average Taylor

factor, lVl, so computed was normalized with respect to the Taylor factor for a material displaying a

random texture, namely 3.06 [20, 21, 26].



3. Results and Discussion

3.1 Texture

In addressing the results of the texture analyses, the term intensity can be considered as the area

under the orientation density curves plotted either as a function of through-thickness location for the

individual components or as a function of orientation (%) in Euler space for the texture fibers. The
textural characteristics of the 2195 extrusion are summarized in Figure 7. The through-thickness

variations in the intensity of the dominant DF- and RX-related texture components in the Skin regions are
shown in Figures 7(a) & 7(b), respectively. The dominant DF-related components are Brass and S'2,

which exhibit uniform intensities through the t to 3t/4 region which then decrease toward the ti location.
The strongest RX-related component is Cube through the cross-section, with the Goss, RCRD1 and RCRm
components also displaying intensity. All of the RX-related components exhibit maximum intensity at
the t/2 location and decrease symmetrically toward both surfaces. Similarly, the through-thickness
variations in the intensity of the dominant texture components in the Base regions are shown in Figures

7(c) & 7(d). The dominant DF-related component is Exl with the Ex_, Ex 3and Cu components also
displaying intensity. The intensity of the Ex, component is at a maximum at the t/2 location and
gradually decreases toward the t i and t locations. The variation in intensities of the Ex_, Ex3 and Cu
components through-thickness is asymmetrical, displaying maxima at the t/4 location and decreasing

toward both surfaces. The RX-related components comprise a mixture of {hkl }< 100> type components
with Cube and RCRD, having the highest intensity. The RX-related components do not display a
systematic variation in intensity through the cross-section. The intensities of the DF-related texture fibers

in the Skin and Base regions at the t/2 location are compared in Figure 7(e). The Skin exhibits the _ fiber

and the Base the <111> fiber, both showing similar intensity as a function of %. The _ fiber shows

maximum intensity at the Brass orientation (%= 0 ° and 45 °) and low intensity around the Cu (%= -45°), S

(%= -25 °) and S', (%= 20 °) orientations. Similarly, the <111> fiber shows maximum intensity at the Ex,

orientation (%= 0° and 45 °) and lower intensity around the Cu (%= -45°), Ex2 (%= -25 °) and Ex_ (%=
20 °) orientations. The intensities of the RX-related fibers in the Skin and Base regions at the t/2 location
are compared in Figure 7(f). The <100> fiber, common to both regions, is stronger in the Skin than in the

Base. Both have maximum intensity at the Cube orientation (_)= 0°), some intensity at the Goss

orientation (_)= 45 °) and lesser intensity at the RCRDI and RCRD 2 orientations (_)= 20 ° and 35 °,
respectively).

Figure 8 illustrates the textural characteristics of the 2098 extrusion. Figure 8(a) shows that the
dominant DF-related components in the Skin region are Brass and S'_, with S and S', displaying lesser
intensity. For most of the components, the through-thickness variation in intensity is not symmetrical

about the mid-plane with maxima exhibited in the t/4 through t/2 locations and decreasing intensity
toward the surfaces. The exception is the S', orientation, which displays a maximum at the 3t/4 location,

but also shows decreasing intensity toward the t i and t olocations. Figure 8(b) reveals that the intensities
of the RX-related components in the Skin are relatively weak through most of the cross-section.
However, the Goss and RC_2 components display significant intensity at the t olocation. The through-
thickness variations in the dominant DF- and RX-related texture components in the Base region are

shown in Figures 8(c) & 8(d), respectively. The dominant DF-related component is Ex,, with the Ex_, Ex_
and Cu components showing moderate intensity. The intensity of the Ex, component is highest in the t/4
through 3t/4 region and then decreases toward both surfaces. The intensities of the Ex_, Ex_ and Cu

components vary little for most of the cross-section, but decrease to zero at the ti location. The dominant
RX-related component is Cube, with RC_I, Goss and RC_ displaying similar but lower intensity. The
through-thickness variation in Cube intensity is symmetrical about the t/2 location, comprising a
maximum at t/2 and decreasing toward the surfaces. The intensity variation of the RC_, component is

6



notsystematic,butexhibitsamaximumatthe3t/4location.Theintensitiesof theDF-andRX-related
fibersin theSkinandBaseregionsatt/2arecomparedinFigure8(e)& 8(f),respectively.The<111>
fiberin theBaseis slightlystrongerthanthe_ fiberin theSkin,withmaximumintensitiesattheExIand
Brassorientations, respectively. Intensities of the other DF-related components mentioned earlier are
low, corresponding to the valleys observed. The <100> fiber in the Base is stronger than in the Skin,
particularly at the Cube orientation. The <100> fiber in the Base has maximum intensity at Cube with
some intensity at the Goss orientation, whereas intensities along the length of the <100> fiber in the Skin
are weak.

Similarly, the textural characteristics of the 2096 extrusion are shown in Figure 9. The through-

thickness variations in the dominant DF- and RX-related texture components in the Skin region are shown
in Figures 9(a) & 9(b), respectively. Among the DF-related components, Brass has the highest intensity,
followed by S'2, with the S and S'1 components showing lesser intensity. The variation in intensity of

Brass and S'2 is asymmetrical through the cross-section, both showing maxima in the t/4 through t/2
location. The intensity of all components tends to decrease to low levels at both surfaces. The Cube
orientation has the highest intensity among the RX-related components, with small contributions from the
other {hkl }<100> type texture components. All of the RX-related components are weak at the surfaces

and only the Cube component has significant intensity in the t/4 through 3t/4 location. Figure 9(c) shows
that the dominant DF-related component in the Base region is Ex,, with the other {hkl }<111>
components displaying lower intensity. The intensity of the Ex, component is highest at the t/2 location
and decays toward both surfaces. The remaining components have a lesser, but more uniform intensity

through-thickness, exhibiting a decrease only at the t i location. Figure 9(d) shows that amongst the RX-
related components, Cube displays the highest intensity in the t/4 through 3t/4 region, with most of the
other {hkl }< 100> type components being weak. There is a contribution from the RCRD_component
through the cross-section, but it is negligible at the t/2 location. The intensities of the DF-related fibers in

the Skin and Base regions at t/2 are compared in Figure 9(e). The <111> fiber in the Base is marginally

stronger along the length than the _ fiber in the Skin, again with maximum intensities at the Ex_ and Brass
orientations, respectively. The intensities of the RX-related fibers in the Skin and Base regions at t/2 are

compared in Figure 9(f). The <100> fiber intensities are similar and weak for both the Skin and Base,
with highest intensity at Cube and some intensity at the Goss orientation.

In summarizing the data for all three alloys, the Skin regions exhibit a _ + <100> fiber texture,
dominated by the Brass and Cube components. This type of texture is frequently associated with thin
section extrusions and plane strain deformation processing [10]. The Base regions exhibit a <111> +

<100> fiber texture, dominated by the Ex 1and Cube components. This texture is often associated with
thick-section extrusions and axisymmetric deformation processing [15, 16]. The relative strength of the
DF- and RX-related components and fibers is important when attempting to equate the textural

characteristics with mechanical behavior. Taylor analyses predict that materials with strong Brass or S
textures will exhibit yield strength minima in the 30-60 ° specimen orientation range, while Cube and
Goss textured materials will exhibit yield strength maxima in the same orientation range [19]. Therefore,

the counteracting effect of these textural elements are expected to exert a strong influence on mechanical
anisotropy. In comparing the textural characteristics in the Skin and Base regions, the area of the cross-
section from t/4 through 3t/4 will have the most impact on mechanical behavior. This corresponds to the
approximate through-thickness location from which the tensile and fracture toughness specimens were

extracted. Evaluating the area under the curves in Figures 7, 8 & 9, the DF-related texture of the 2195 is
the simplest, with contributions from components other than Brass and Exl being relatively small. In the

case of 2098 and 2096 the texture is more of a mixture. The _ and <111> fibers are more fully developed

along the length, implying that a larger number of texture components contained within are contributing
to the overall texture characteristics than in 2195. The RX-related texture is best addressed by restricting
discussion to the Cube orientation, since all of the other components are relatively weak. In comparing

all three alloys, the intensity of the Cube orientation within the cross-sectional area of interest is highest
in the 2098 Base, but lowest in the 2098 Skin region (except for the anomalous intensity spike at the
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surface). The Cube orientation possesses moderate intensity in the 2195 and 2096 in both the Skin and

Base regions.

The consistent differences in textural characteristics between the Skin and Base regions for all

three alloys can be attributed to the geometry-dependent variations in material flow during the extrusion

process. Taylor-type models have been employed previously with some success to establish texture-

processing relationships in rolled product [19, 20, 23, 26, 50, 51]. One such application of a relaxed

constraint (R) model (illustrated in Figure 1) predicts the formation of the Ex I component by allowing

simultaneous shearing on the T plane in the L direction (B-type shear) and on the S plane in the L

direction (C-type shear), i.e. the BC model [26]. In contrast, formation of the Brass component is

predicted by allowing additional shear on the S plane in the T direction (S-type shear), i.e. the BSC model

(The nomenclature employed here is that adopted in reference 26). These concepts are applicable to the

material flow and resultant textures observed in the near-net-shape extrusions studied here. The L, T and

S directions in rolled product are analogous to the A, C and R directions, respectively, in extruded

product. During the extrusion process, the diameter of the initial donut-shaped blank is increased (and the

thickness simultaneously decreased) as it passes over the mandrel within the extrusion die [32]. At the

locations where the stiffeners are being formed this expansion is geometrically constrained, thereby

limiting material flow in the circumferential direction. Therefore, S-type shear will be restricted

culminating in the Base regions exhibiting a texture dominated by the Ex 1 component and the Skin

regions by the Brass component.

3.2 Grain Structure

The macrostmctural characteristics of the 2195, 2098 and 2096 extrusions are illustrated in

Figures 10, 11 & 12, respectively. The macrostmctures are very similar, comprising a laminated grain

structure which conforms with the geometry of the extruded cross-section. In the Skin regions, the layers

of grains are parallel to the principal extrusion plane and exhibit little through-thickness variation. In the

Base regions, a similar layered grain structure exists, but the contours are distorted out-of-plane toward

the stiffener. In the Web of the stiffener, the layers form a 'herring bone' pattern and the area from t/2 in

the Base region up into the stiffener reflects a transition in macrostmcture from that in the Skin to that

characteristic of the Web region. At the t/2 location in the Base, the layers form an approximately

triangular array at the center of the node between the Web and the Skin. The macrostmctural

characteristics vary little from the mid-plane toward the inner surface of the extrusion opposite the

stiffener and are similar to the majority of the Skin region. The only apparent difference between the

three alloys is the apparent grain size; the 2096 being the finest, the 2195 being intermediate and the 2098

being the largest.

The microstmctural and microtextural characteristics of the 2195 extrusion in the Skin and Base

regions are illustrated in Figure 13. The grain morphologies typical of the t/2 location are shown for the

C-R and A-R planes in Figures 13(a) & (b), and the corresponding microtexture results from the A-R

plane are shown in Figures 13(c) & (d). Similar data for the 2098 and 2096 extrusions are displayed in

Figures 14 & 15. In all three alloys, the grains are highly elongated in the extrusion direction. Although

not specifically shown in the figures, the grain aspect ratio was determined to be of the order of 100:1. In

both the Skin and Base regions, the microstmctures can best be described as comprising a laminated grain

structure with uniform layer spacings. In the Skin regions the boundaries are well-defined, but the

contoured layers in the Base regions are less distinct and the boundaries are more fragmented. There is

prolific subgrain structure and some evidence of deformation and shear bands throughout the extruded

cross-sections. The layers appear thinner in the Skin than in the Base regions, and the grain morphology

transitions from lath-shaped in the Skin to a mixture of lath-shaped and more acicular-shaped grains in
the Base.



The Skin regions are equivalent to thin-section extrusions, which typically possess highly
elongated grain structures with grains exhibiting an elliptical cross-section perpendicular to the extrusion
direction [10, 15, 16]. In contrast, the highly localized Base region may be likened to thick-section

extrusions, due to the presence of the stiffener, which typically exhibit more fibrous microstmctures
consisting of highly elongated grains with circular cross-sections [10, 15, 16]. The only discemible
difference in the characteristics of the three alloys is that 2098 appears to have a coarser microstmcture
than the other two extrusions due to the layers of grains being thicker, particularly in the Base region. In
contrast to rolled product, through-thickness microstmctural and textural variations were not observed to

be symmetrical about t/2 [36, 52-55]. As indicated, the area of interest within the extruded cross-sections
for the purposes of correlation with mechanical properties was the t/4 to 3t/4 section. In the Skin,
through-thickness variations in grain structure are minimal and the microstmctural characteristics

documented for the t/2 location are representative of 90% of the cross-section. In the Base, the presence
of the stiffener causes a distortion of the layered grain structure which persists for approximately 50% of
the cross-section toward to (stiffener side). The remainder of the cross-section possessed microstmctural
characteristics similar to the Skin region.

The microtexture results for each of the three alloys are consistent with the ODF data in that the
Skin and Base regions both exhibit double fiber textures. In addition to revealing the textural

composition on a finer scale, the microtexture data also reveal the textural distribution. The Skin regions
tend to contain alternating layers of <112>- and <100>-oriented grains, while the Base contains
alternating layers of <111>- and <100>-oriented grains. The texture components contained within the

<112> fiber are very closely related to those in the _ fiber, in that the <112> fiber contains the

corresponding, idealized crystallographic orientations [37]. Combining the metallographic and
microtexture data for the 2195, 2098 and 2096 extrusions, the nature of the microstmcture can accurately
be described as a 'lamellar' grain structure throughout the extruded cross-sections. In addition to the

coarser layered grain structure in the 2098, the only other difference between the three alloys is associated
with the relative intensity of the DF- and RX-related fibers. In the Skin regions, the <112>/<100> ratio
varies from a high value of 8.3 (2096) through 2.1 (2098) to a low of 1.4 (2195). In the Base regions, the
<111>/<100> ratio varies from a high of 1.9 (2096) through 1.8 (2195) to a very low value of 0.7 (2098).

Again, these differences would be expected to have an impact on mechanical anisotropy, based on the
counteracting effect of DF- and RX-related texture elements on yield strength predictions [19].

3.3 Tensile Properties

Typical stress-strain curves for the Skin and Base regions in the 2195, 2098 and 2096 extrusions
at the 0 °, 45 ° and 90 ° orientations are shown in the appendix for reference; Figures A1-A6, (a-c). The
tensile behavior of 2195, as a function of specimen orientation to the extrusion direction, is summarized

in Figures 16(a-c). In the Skin region, ultimate and yield strengths are highest at the 90 ° orientation,
slightly less at 0 ° and lower at all other orientations. The yield strength is lowest in the 60-75 ° range.
Correspondingly, ductility is highest at 45 ° and systematically decreases toward the 0 ° and 90 °
orientations. In the Base region, ultimate and yield strength are highest at the 0 ° orientation and lower at

other orientations. The yield strength is lowest around the 30 ° orientation. Ductility is highest at 30 ° and
60 ° and lowest at the 45 ° and 90 ° orientations. The tensile properties of 2098 are summarized in Figures
17(a-c). In the Skin region, ultimate and yield strength are highest at the 90 ° orientation, slightly less in

the 0 ° to 30 ° range and lowest in the 450-60 ° range. Tensile ductility is highest at 45 ° and tends to
decrease toward the 0 ° and 90 ° orientations, although the minimum is actually located at 15°. In the Base
region, ultimate and yield strength are highest at the 0 ° orientation, slightly less at 90 ° and lowest at the
30 ° and 60 ° orientations. Ductility is highest at 30 °, lowest at 15 ° and 90 ° and intermediate at other

orientations. The tensile data pertaining to 2096 are shown in Figures 18(a-c). In the Skin region,
ultimate and yield strength are highest at the 90 ° orientation, slightly less at 0 ° and lower at all other
orientations. The ultimate strength is lowest at the 45 ° orientation, whereas the yield strength is lowest in

the 60-75 ° range. Fluctuations in ductility with specimen orientation are smaller and less systematic than
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for 2195and2098.IntheSkinregion,ductilityishighestat45° and75°,butlowestatthe0° orientation.
In theBaseregion,ultimateandyieldstrengtharehighestatthe0° orientation,slightlylessat90° and
loweratotherorientations.Again,theyieldstrengthis lowestin the60-75°rangeandductilityishighest
at60° andlowatthe30and90°orientations.

Theorientation-dependentvariationsin yieldstrengthobservedareconsistentwithprevious
findingswhichshowthatthe<111>fibertextureequatestomaximumyieldstrengthin thelongitudinal
(A) directionandthe_ fiberequatestomaximumyieldstrengthin thetransverse(C)direction[10,15,
16,56]. IntheSkinregions,tensileductilityishighestfor 2195,lowestfor 2096andintermediatefor
2098.Theorientationdependenceof ductilitywassimilar,withaconsistentincreaseinductilitywith
decreaseinyieldstrengthin theoff-axis orientations. In contrast, orientation-dependent fluctuations in
ductility are not systematic in the Base regions. A common feature of the data is that ductility is at, or
close to, a minimum at the 90 ° orientation for all three alloys. The data also show a drop in both yield
strength and ductility in selected off-axis orientations. This anomalous tensile behavior is probably

related to the influence of complex grain morphologies on fracture mode and the detrimental impact on
ductility that has been documented for rolled products [57-62]. Reduced ductility in highly directional
microstructures has been associated with fracture occurring by a mixture of transgranular failure along

shear bands and intergranular failure along grain boundaries oriented parallel to the plane of maximum
resolved shear stress [63-65]. The more fibrous nature of the grain structure in the Base region provides
an increased area fraction of unfavorably oriented grain boundaries in the off-axis orientations resuking in
lower ductility [66-68]. In extruded products with a similar cross-sectional geometry, it has been

observed that tensile fracture tends to follow the contours of the grain structure in such regions, again
reducing ductility [69-71 ]. The tensile properties, averaged over all orientations, are compared in Table
4, which indicates that alloy composition as a variable governs the overall strength levels only. This is to
be expected based on the decreasing solute content and a common primary strengthening phase [33]. For

all three alloys, the lowest strength is approximately 85% of the highest value with the maximum-
minimum differential being marginally wider for the Base than for the Skin regions.

Table 4. Average Tensile and Toughness Properties

Alloy Region C_s, ksi Cys,ksi el., % K,i, ksi',lin

2195 Skin 83 76 13 45
Base 82 76 10 27

2098 Skin 78 71 15 41

Base 80 71 10 30

2096 Skin 76 68 12 14
Base 75 70 10 15

3.4 Fracture Toughness Properties

Typical K-R curves for the Skin and Base regions in the 2195, 2098 and 2096 extrusions at the
0 °, 45 ° and 90 ° orientations are shown in the appendix for reference; Figures A1-A6, (d-f). The initiation

toughness values, averaged over all orientations, are shown in Table 4. The 2195 and 2098 extrusions
exhibit comparable initiation toughness, however the values for 2096 are lower. The initiation toughness
values are also consistently higher for the Skin than for the Base regions in 2195 and 2098. Variations in

initiation toughness with orientation for the three alloys are shown in Figures 16(d), 17(d) & 18(d),
respectively. In the case of 2195, the Skin region is anisotropic exhibiting an anomalously high initiation
toughness in the 45 ° orientation. The reason for this is unclear. The Base region is more isotropic with
the lowest initiation toughness value noted in the 90 ° orientation. The 2098 displays similar levels of

initiation toughness to 2195 in all but the 45 ° orientation in the Skin region. Although isotropic, the
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overalllevelof initiationtoughnessin the2096ispoor.Finally,thestrength/toughnesscombinationof
theseextrudedproductsis ofparticularinterestforstructuralapplications.Therelationshipisrepresented
inFigures16(e),17(e)and18(e)for the2195,2098and2096alloys,respectively,for boththeSkinand
Baseregions.In general,2195exhibitsthebestcombinationof yieldstrengthandinitiationtoughness,
the2096extrusionthepoorest,whilethe2098valuesareintermediate.Thecommonfeatureis thatthere
arenosystematictrendsin thedata,regardlessof alloy,locationororientation.Thisis inagreementwith
previousstudieswhichhaveconcludedthatthereisnotasimplerelationshipbetweentensileductilityand
fracturetoughnessinA1-Lialloymaterials[59,66].

In A1alloyrolledproductsit hasbeendemonstratedthatheavilydeformedmicrostmcturesresult
inhighL-TtoughnessandlowT-L values,butrecrystallizedmicrostmcturesresultin lowerL-T
toughnessandlessanisotropy[57,58]. In A1-Liextrudedplateit hasalsobeendocumentedthatfracture
toughnessdecreaseswithsectionthicknessandincreasingvolumefractionsof RX-relatedgrainstructure
[48]. Asalludedtoearlier,thin-sectionextrusionstendto exhibitmicrostmctureswithahighervolume
fractionof RX-relatedgrainsthanthick-sectionextrusions[14,48,49]. Theconsequentialchangesin
mechanicalbehaviorhavebeencitedasimprovedisotropy,withlowerstrengthandtoughness,butbetter
overallductility[72-74].Although,it hasalsobeenshownthatlongitudinalductilityperseisunaffected
byextrudedsectionthickness[15,16],theimprovedductilityhasbeenequatedwithmoreequiaxedgrain
structures[66-68].The2195and2098extrusionsexhibitcomparablelevelsof initiationtoughnessin the
0° orientationinboththeSkinandBaseregions,buthavedifferinglevelsofRX-relatedtextural
elements.Basedonthestrengthof the<100>fiber,thevolumefractionof RX-relatedgrainsis
marginallyhigherin theSkinthanin theBasefor 2195,butthereverseistruefor2098.Therefore,the
trendof higherinitiationtoughnessvaluesin theSkincomparedtotheBaseregionsin the2195and2098
extrusions,independentoforientation,isnotconsistentwithpreviousobservationsandfurtherstudyis
required.

3.5 Texture-Yield Strength Correlations

There are many ways to correlate texture with yield strength owing to the number of descriptors
available for both texture characteristics and mechanical anisotropy. In terms of texture, the intensity of

dominant components, such as Brass or Cube, can be quoted, or the ratio between the two [75]. Using a
broader spectrum of data, the intensity of texture fibers, such as < 112>, < 111 > or < 100>, or the ratio
between them can be determined [76]. The use of ratios is often more meaningful because Taylor
analysis of pure textures reveals that DF-related components, such as Brass or S, result in a yield strength

minimum in the 30-60 ° range, while RX-related components, such as Cube and Goss, result in a
maximum in the same orientation range [19]. The counteracting effect of these factors has been used to
explain variations in the orientation dependence of yield strength based solely on the influence of pure

texture elements. When defining anisotropy, yield strength variations have been quoted in terms of the

ratio between either the minimum and maximum yield strength (i.e. c_ys(min)/c_ys(max)), independent of
specimen orientation, or simply the ratio between yield strength values at the 45 ° and 0 ° orientations (i.e.

c_(45)/c_(0)) [11]. In addition, a so-called 'in-plane anisotropy' (IPA) coefficient has been employed,
which can be defined in two ways [7]. The first is for a material which is strongest parallel to the

longitudinal axis (such as in the Base regions) and is defined as IPA= [(2.c_(0)- c_(45)- c_ys(90))/

2.c_(0)] x 100 %. The second is for a material which is strongest parallel to the transverse axis (such as

in the Skin regions) and is defined as IPA= [(2.c_(90)- c_(45)- c_(0))/2.c_ys(90)] x 100 %. Another
method for quantifying anisotropy is to employ Kurtosis analysis, which is a standard mathematical tool
used to describe the relative flatness of a curve [77]. In this case, it allows determination of the

orientation-dependent deviations in yield strength from the average value; more negative numbers being
equated with more isotropic behavior. The various descriptors for texture and yield strength used by

previous authors and applied to the current data are listed in Table 5.
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A survey of the data contained in Table 5 reveals that the degree of anisotropy is highly

dependent on the definition employed. When using the c_ys(45 ) / c_ys(0) and c_(min) / c_(max) ratios, the

2098 Base region is the most anisotropic and the 2195 Base region the most isotropic. In contrast, when

the IPA coefficient or Kurtosis analysis is employed, the 2195 Base region appears to be the most

anisotropic and the 2096 Skin region the most isotropic. The rankings derived by using the various

approaches are shown in Table 6, categorized into Skin and Base regions for correlation purposes. Based

on the assumption that increasing amounts of RX-related texture elements should result in more isotropic

yield strength behavior [19], there should be a correlation between the rankings listed in Table 6.

Table 5. Texture Characteristics @ t/2 vs. Yield Strength Anisotropy

SKIN

Alloy 2195 2098 2096

Texture Cube, f(g) 17 4 9

(Components) Brass, f(g) 31 26 30

Cube / Brass 0.55 0.15 0.30

Micro-texture <100>, % 34 26 10

(Fibers) <112>, % 46 54 82

<100> / <112> 0.74 0.48 0.12

%s(45) / %s(0) 0.87 0.85 0.85

Yield Strength %.s(min) / %.s(max)
IPA, %

0.82

9.8

0.83

9.9

0.83

8.6

Kurtosis -0.54 -0.93 -1.11

BASE

Alloy 2195 2098 2096

Cube, f(g) 10 31 11Texture

(Components) Ex 1, f(g)

Cube / Ex 1

31

0.32

34

0.91

33

0.33

Micro-texture <100>, % 28 57 29

(Fibers) <111>, % 51 38 55

<100> / <111> 0.55 1.50 0.53

0.81 0.88 0.83

0.79 0.83 0.80Yield Strength
cv.s(45) / erv,s(O)

%,_(min) / %,_(max)
IPA, % 10.617.8 9.3

Kurtosis +3.26 -0.15 -0.85

Examination of the results for the Skin region reveals that increasing Cube/Brass ratio and/or

<100>/<112> ratio correlates with increasing yield strength isotropy as defined by the %_(min)/%_(max)

ratio. Inversely, increasing Cube/Brass ratio and/or < 100>/< 112> ratio correlates with decreasing yield

strength isotropy as defined by the %s(45)/%_(0) ratio. In the case of the Base region, the rankings show

that increasing Cube/Ex I ratio correlates with increasing yield strength isotropy as defined by the IPA

coefficient. However, increasing Cube/Exl ratio correlates with decreasing yield strength isotropy as

defined by both the cr_(45)/cr_(0) and cr_(min)/crys(max) ratios. The net result from these observations is

that there is no systematic trend based on the commonly used descriptors and an alternative approach is

required.

The results of applying the F (Taylor) and IGD (Wert) models to single grains with orientations

commonly observed in the present work are shown in Figure 19. The texture components selected were

Brass, { 011 }<211 >; Ex,, { 011 }< 111 >; and Cube, { 001 }<100>; and predicted values of Taylor factor are
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Table6. Texture/AnisotropyRankings

SKIN

LeastRX

MostRX

BASE

LeastRX

MostRX

Cube/
Brass
2098
2096

<100>/
<112>
2096
2098

cyys(45)/

%,_(0)
2195

%s(min)/c

w(max)
2098

2096

2195 2195 2195

<100>/
<111>

2096

2098

2096

cy_(45)/

%,_(0)
2098

%s(min)/c

v,_(max)
2098

IPA, %

Cube/

Ex 1
2195

2098

2195

2096

IPA, %

Kurtosis

2195

2098

2096

Kurtosis

2195 2195

2096 2195 2096 2096 2096 2098

2098 2098 21952195 2098 2096

Least Iso.

Most Iso.

Least Iso.

Most Iso.

compared as a function of tensile axis orientation. The plots reveal that at certain specimen orientations,

there are large differences in the Taylor factor values predicted by the two models. The Brass-oriented

grain shows the largest difference around the -55 ° orientation, Ex I around the -35 ° orientation and

Cubearound the +/-45 ° orientations. The three grain types have one thing in common at these

orientations, in that a <110> direction in each of these grains is oriented parallel to the tensile axis. The

significance of this is that the tendency for an individual grain to depart from axisymmetric flow is

dependent on orientation with respect to the tensile axis [75]. The ratio between the Taylor factor and the

reciprocal of the Schmid factor is unity (i.e. M/(1/m) = 1) for grains with <100> or <111> parallel to the

tensile axis. However, M/(1/m) > 1 at other grain orientations and is close to the maximum (M/(1/m) =

1.65) when <110> is parallel to the tensile axis [20]. So it is expected <110>-oriented grains have much

lower predicted values of yield strength and the largest tendency to deviate from the F model toward the

N model and would be better predicted by an R-type (or the IGD) model.

Average Taylor factors calculated for all three extrusions in both the Skin and Base regions

employing the F and IGD models are shown in Figure 20. As described earlier, Taylor factors as a

function of orientation for bulk material were determined using a weighted average including all of the

texture components considered. The asymmetry with respect to orientation, which is common to most of

the components, was accounted for by averaging the variation from 0 ° to +90 ° with that from 0 ° to -90 °.

The dotted line on the plots represents the Taylor factor for a fully isotropic material comprising a

randomly oriented grain structure, i.e. 1VI= 3.06 [20, 21, 26]. The Skin and Base regions show many

common trends for all three alloys. The F model predictions for the average Taylor factor are

consistently higher than the IGD model, independent of specimen orientation. The F model also predicts

that approximately half of the orientations will have a higher Taylor factor than a specimen with a random

grain structure. With a few exceptions, the IGD model predicts that the average Taylor factor will be

lower than that for a random sample at all orientations. Both models predict that the Taylor factor will be
at a maximum at the 90 ° orientation in the Skin and at the 0 ° orientation in the Base for all of the

extrusions. Both models also predict a single minimum, but the location with respect to specimen

orientation varies. According to the F model, the specimen orientation at which the minimum Taylor

factor is predicted varies widely. However, the IGD model predicts a minimum in the 45-60 ° orientation

range in the Skin and the 30-45 ° range in the Base. This can be explained by revisiting Figures 19(a) and

19(b), which show the variation for the dominant texture components in the Skin (Bs) and Base (Exl)

regions, respectively. The largest difference between the F and IGD model predictions is in the -45 to

-60 ° specimen orientation range for Bs and the -30 to -45 ° range for the Ex_ component. Averaging the

Taylor factor values between -90 ° and +90 ° to arrive at 1VIfor the bulk results in a single and very

pronounced minimum in the 45-60 ° range in the Skin and the 30-45 ° range in the Base.
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The yield strength as a function of specimen orientation, normalized with respect to the yield
strength value for the 0 ° orientation, is also shown in Figure 20. A comparison between the measured and
predicted values of yield strength reveals that application of the model concepts explored by Wert and co-

workers show promise [30, 31]. The overall validity of the model can be judged by its ability to predict,
(a), the orientations at which highs and lows in yield strength occur, and (b), the absolute magnitude of
the highs and lows. For all three extrusions, in both the Skin and Base regions, the IGD model
predictions agree well with both the location and the magnitude of the fluctuations in measured yield
strength. The IGD model provides a much better simulation than the F model, which is consistent with

previous studies employing progressively relaxed constraints with increasing grain aspect ratio in order to
accurately predict yield strength anisotropy [19, 20, 23, 26, 50, 51]. Such models assume that five active
slip systems are required to support deformation of equiaxed grain structures and that, as the grain aspect

ratio increases, the number of necessary slip systems decreases. On this basis, the F model is only
expected to be accurate for materials with equiaxed grain structures and the IGD model will tend to work
better for flat and/or elongated grain structures. The highly directional, lamellar grain structure
characteristic of all three extrusions easily falls into this latter microstmctural category.

It is probable that no single model can accurately simulate yield strength anisotropy in materials
containing highly elongated grain structures. Model predictions for such materials tend to be artificial

because it has to be assumed that the grain direction is always parallel to the tensile axis [23, 50]. In
reality, when the tensile axis is parallel to the grain direction (0°), the grains are being loaded in parallel
and the situation is close to homogeneous strain in all grains. In contrast, when the tensile axis is
perpendicular to the grain direction (90°), the grains are being loaded in series and the situation is close to

uniform stress in all grains [20]. Consequently, the F model is applicable at 0 °, the N model is more
appropriate at 90 ° and a composite of the two should provide the best predictions at intermediate
specimen orientations, i.e. an R-type model. In this case, that was only found to be true for the 2098 Skin

region, where Figure 20(c) shows that the F model provides a better simulation for the 0-30 ° orientations
and the IGD model is more accurate for higher specimen orientations. Both of these models assume that
the microstmcture is homogeneous and that there is no interaction between grains. However, the
microstmcture in both the Skin and Base regions essentially comprises a laminate of alternating layers of
DF- and RX- related grains. The interaction between grains in these multi-layered microstmctures may

account for the discrepancies between predicted and measured yield strength anisotropy observed.

Grain morphology as a variable, contributing to relaxed constraints, was not specifically

accounted for in this application of the IGD model. Despite the omission, the data clearly demonstrate
that the IGD model provides a better simulation of yield strength anisotropy in the three extrusions than
the F model. This suggests that the key assumption of the model, namely minimum yield strength in each

grain, is appropriate for predicting the behavior of materials exhibiting lamellar grain structures.
Predictions by the IGD model also tended to be more accurate for the Skin regions than for the Base
regions, and this is probably related to the highly localized nature of the area beneath the stiffeners. The
Skin region exhibited much more uniform microstmctural and textural characteristics than the Base

region. As indicated earlier, the Base texture sample was constructed as a laminate in order to isolate the
texture characteristics at that location. Such compensation could not be made with the tensile specimens
with gage dimensions larger than the extent of the Base region. At the 0 ° orientation, the Base region

constitutes 100% of the gage length and 50% of the gage width, but at the 90 ° orientation, only 12.5% of
the gage length and 100% of the gage width (Figure 6). Therefore, the yield strength data pertaining to
the Base region is likely compromised by contributions from, and interactions with, neighboring Skin
regions which currently cannot be incorporated into models [52, 53].
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4. Concluding Remarks

An investigation of the structure-property relationship in A1-Li alloy extrusions has been
conducted. The microstmctural characteristics of the 2195, 2098 and 2096 extrusions are similar,

comprising a laminar structure of high aspect ratio grains exhibiting location-dependent variations in
morphology. 2098 had the coarsest grain structure and 2096 the finest throughout the extruded cross-
sections. The differences in grain structure between the Skin and Base regions can be attributed to
variations in material flow during the extrusion process. The Skin region is equivalent to a thin section

extrusion, resulting in lath-shaped grains arranged in parallel layers. The highly localized Base region is
effectively a thick section extrusion, due to the presence of the stiffeners, resulting in a mixture of lath-
shaped and acicular-shaped grains. The textural composition of the three extrusions is also similar, all

exhibiting a double fiber texture throughout. The Skin regions exhibit a _ + <100> fiber texture,

concentrated at the Brass and Cube orientations, which is frequently associated with plane strain
deformation processing. The Base regions exhibit a <111> + <100> fiber texture, concentrated at the Ex 1
and Cube orientations, which is often associated with axisymmetric deformation processing. The textural

distribution, revealed by the microtexture results, comprises alternating layers of <112>- and <100>-
oriented grains in the Skin regions and alternating layers of <111>- and <100>-oriented grains in the Base
regions. In combination with the metallographic observations, the microstmcture can be accurately

described as a lamellar grain structure

The tensile behavior of the 2195, 2098 and 2096 extrusions share several common characteristics.
The Skin regions are strongest in the 90 ° orientation and weakest in the 500-75 ° specimen orientation

range. In contrast, the Base regions are strongest in the 0 ° orientation and weakest near the 30 ° and 60 °
specimen orientations. Independent of specimen orientation, the minimum yield strength is
approximately 85% of the maximum value in all three extrusions, being consistently higher in the Base

regions than the Skin regions. In both the Skin and Base regions, 2195 exhibits the highest strength, but
is the most anisotropic, 2098 has lower strength, but is more isotropic, and 2096 has the lowest strength,
but is the most isotropic. The fracture toughness data reveal that 2195 and 2098 exhibit comparable
initiation toughness, while the values for 2096 are poor. The Skin regions exhibit highest toughness in

the 45°(45-45) orientations and lowest in the 90°(C-A) orientations. The Base regions exhibit the best
toughness in the 0°(A-C) orientations and the lowest in the 90 ° orientations. Fracture toughness
properties are consistently better in the Skin regions than in the Base regions, which is probably related to
the complex grain structure observed in the Base. The more acicular grain morphology presents a higher

area fraction of unfavorably oriented grain boundaries for 45 ° and 90 ° specimen orientations.

Attempts to correlate yield strength anisotropy with textural characteristics based on commonly

used descriptors were not successful. The degree of anisotropy proved to be highly dependent on the
definition employed and ranking of the alloys revealed no consistent trends. In contrast to previous
findings, there was also no apparent correlation between increasing amounts of RX-related texture
elements and more isotropic yield strength behavior. Application of the modeling concepts explored by

Wert et al. showed some promising results. The relaxed constraint (IGD) model consistently provided
better simulations of the yield strength anisotropy than the full constraint (F) model for all three
extrusions. This implies that relaxing the axisymmetric strain requirement, reducing the number of

necessary slip systems and assuming minimum yield strength in each grain is appropriate for materials
comprising lamellar microstmctures. The Wert model predictions for the Skin region tended to be more
accurate than for the Base regions because the grain morphology and textural composition were more
uniform. Deviations between the predicted and measured anisotropy were likely a consequence of the

heterogeneous microstmctures observed and the effects of gradient microstmctures will need to be
incorporated into future models.
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Figure 1. Taylor-type models, ranked by decreasing levels of constraint from the Taylor model, through

various Relaxed Constraint models, to the Sachs model, where CxYrefers to shear on the plane

perpendicular to the X direction in the Y direction and ccc is the Poisson effect.
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(a) Original cylindrical cross-section with stiffeners on the outer surface

(b) Flattened panel following secondary processing

Figure 2. Photographs of the extrusions.
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Figure3.Extrusionschematicshowingcross-sectionalgeometry,dimensionsandnomenclatureadopted;
(A)xial,(R)adial,(C)ircumferential.
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Figure 13. 2195 microstructural and microtextural characteristics at t/2.
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Figure 14. 2098 microstructural and microtextural characteristics at t/2.

33



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_i_ii_i
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_ A

_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(a) Skin, C-R/A-R planes (b) Base, C-R/A-R planes

:::::::::::::::::::_::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

iiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_-_:-;-;-;-;-;-_iiii_ii iiiiiiiiiiiiiiii_`;%`_iii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

_iiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_i_
 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 

<112> 81.6 %

<111> 1.3%

<100> 9.8 %

<112>

<111>

<100>

20 lam

R

A

<112> 2.1%

<111>54.9%

<100> 28.6 %

(c) Skin microtexture A-R plane (d) Base microtexture A-R plane.

Figure 15. 2096 microstructural and microtextural characteristics at t/2.

34



100 100

&
F--

90

80

70 -- Skin
.... Base

60 I,, I,, I,, I,, I,, I,, I

0 15 30 45 60 75 90

Orientation, degrees

(a) U]t#nate tensile strength vs. orientation

D

-- Skin
Base

9O
\

80

70

60
0 15 30 45 60 75 90

Orientation, degrees

(b) Yield strength vs. orientation

25

20

_- 15._o

_- 10
_o
III

5

-- Skin
.... Base

_\\ //_'-\\

i , , i , , i , , i , , i , , i , , i

0 15 30 45 60 75 90

Orientation, degrees

(c) Elongation vs. orientation

70

60

50
C

40

30

20

10

--.{

-- Skin
.... Base

0

A-C 45-45 C-A

Orientation

(d) Initiation toughness vs. orientation

70

60

50
e--

._- 40

30

20

10

0 45 90
• • • Skin
o v [] Base

• oO

.... i .... i .... i .... i .... i .... i ....

60 65 70 75 80 85 90 95

Cys, ksi

(e) Initiation toughness vs. yield strength.

Figure 16.2195 mechanical properties in Skin and Base, data includes range bars.
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Appendix

Figures A1 through A6 present typical mechanical test data for the three alloys in the Skin and
Base.
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Figure A1. Mechanical behavior of 2195 Skin. Stress-strain curves and K-R curves for various
orientations.

41



I00 I00

F
8O

6O

4O

2O

0 ' '

0
, , I

5

Strain, %

(a) 0 ° (A) orientation

80

60

40
09

20

I .... 0 .... I .... I .... I ....

15 20 0 5 10 15 20

Strain, %

(b) 45 ° orientation

100

09

80

60

40

20

0 .... I

0 5

140

120

(c) 90 ° (C) orientation

100
C

6o
40

20

.... I .... I .... 0

10 15 20 0.0

......... I ......... I .........

0.1 0.2 0.3

Strain, % Aa, in.

(d) A-C orientation

140

120

100
C

._- 80
if)

60
40

20

.oO_ • • •

......... I ......... I .........

0.0 0.1 0.2 0.3

(e) 45-45 orientation

140

120

100
C

._- 80
if)

% 60
x."

40 • oO •
o go

2o
......... I ......... I .........

0.0 0.1 0.2 0.3

Aa, in. Aa, in.

(f) C-A orientation

Figure A2. Mechanical behavior of 2195 Base. Stress-strain curves and K-R curves for various
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Figure A6. Mechanical behavior of 2096 Base. Stress-strain curves and K-R curves for variousorientations.
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